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The physicochemical hydrodynamics of bubbles and droplets out
of equilibrium, in particular with phase transitions, display sur-
prisingly rich and often counterintuitive phenomena. Here we
experimentally and theoretically study the nucleation and early
evolution of plasmonic bubbles in a binary liquid consisting of
water and ethanol. Remarkably, the submillimeter plasmonic bub-
ble is found to be periodically attracted to and repelled from
the nanoparticle-decorated substrate, with frequencies of around
a few kilohertz. We identify the competition between solu-
tal and thermal Marangoni forces as the origin of the periodic
bouncing. The former arises due to the selective vaporization
of ethanol at the substrate’s side of the bubble, leading to a
solutal Marangoni flow toward the hot substrate, which pushes
the bubble away. The latter arises due to the temperature gra-
dient across the bubble, leading to a thermal Marangoni flow
away from the substrate, which sucks the bubble toward it. We
study the dependence of the frequency of the bouncing phe-
nomenon from the control parameters of the system, namely
the ethanol fraction and the laser power for the plasmonic
heating. Our findings can be generalized to boiling and elec-
trolytically or catalytically generated bubbles in multicomponent
liquids.

plasmonic bubbles | bubble bouncing | Marangoni force | phase
transition | binary liquids

Bubbles and bubble nucleation are ubiquitous in nature and
technology, e.g., in boiling, electrolysis, and catalysis, where

the phenomena connected with them have tremendous relevance
for energy conversion, or in flotation, sonochemistry, cavitation,
ultrasonic cleaning, and biomedical applications of ultrasound
and bubbles. This also includes plasmonic bubbles, i.e., bubbles
nucleating at liquid-immersed metal nanoparticles under laser
irradiation, due to which an enormous amount of heat is pro-
duced because of a surface plasmon resonance (1–5). For an
overview on the fundamentals of bubbles and their applications
we refer to our recent review article (6). In general, in these
applications the bubble nucleation does not occur in a pure
liquid, but in multicomponent liquids. Because of that, various
additional forces and effects come into play (7), which are not
relevant in pure liquids. Examples are the Soret effect (8–10)
or body forces arising due to density gradients. Once the mul-
ticomponent systems have interfaces, solutal Marangoni forces
(11) become relevant. The phenomena become even richer
once phase transitions occur in such systems, e.g., solidification
(12, 13), evaporation (14–21), or dissolution of multicompo-
nent droplets (22–25); or nucleation of a new phase such as
in the so-called ouzo effect (26, 27); or in boiling (28), elec-
trolysis (29, 30), or catalysis (31, 32). Similarly, also chemical

reactions occurring at the interface in a multicomponent liq-
uid lead to spectacular effects, such as swimming droplets (33,
34), phoretic self-propulsion (35–38), or pattern formation in
electroconvection (39). The whole field could be summarized
as physicochemical hydrodynamics, and although this is a clas-
sical subject (40), it received increasing attention in recent
years due to its relevance for various applications, due to new
experimental and numerical possibilities, and due to the beauty
of the often surprising and counterintuitive phenomena. For
recent reviews on physicochemical hydrodynamics, we refer to
refs. 41 and 42.

To exactly analyze the various competing forces playing a
role in physicochemical hydrodynamical systems, one has to
strive to have simple and clean geometries, allowing for pre-
cise measurements and a theoretical and numerical approach.
For example, in refs. 43 and 44 we analyzed the competition
between solutal Marangoni forces, gravity, and thermal dif-
fusion by studying an oil droplet in a stably stratified liquid
consisting of ethanol and water, imposing density and surface
tension gradients on the droplet. Depending on the control
parameters, the droplet was either stably levitating or jump-
ing up and down, with a very low frequency of ∼0.02 Hz.

Significance

Plasmonic bubbles are relevant in biomedical diagnosis and
therapy, catalysis, and micro- and nanomanipulation. Hith-
erto, their behavior has mainly been analyzed in pure liquids.
However, in general, these applications of plasmonic bub-
bles take place in binary or multicomponent liquids. Here
we show that plasmonic bubbles in a binary liquid display
surprising phenomena, resulting from the emerging com-
plicated physicochemical hydrodynamics of a vapor bubble
in such binary liquids. Depending on the application, these
phenomena can be either a benefit or a hindrance. Our
results are also relevant for other bubble nucleation pro-
cesses in multicomponent liquids, such as boiling, electrolysis,
or catalysis.
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Similar droplet and bubble oscillations originating from the
competition between solutal Marangoni forces and gravity were
observed in ref. 45.

In this paper, we report and analyze another controlled physic-
ochemical hydrodynamic bouncing phenomenon, even involving
phase transitions, namely that of a nucleating plasmonic bub-
ble (2, 4, 5), but now in an initially homogeneous binary liquid,
for which the delay of bubble nucleation after turning on the
laser depends on the composition of the binary liquid and the
amount of dissolved gas (46) (next, of course, to the power of
the employed laser). As in refs. 43 and 44, we will again see
a bouncing behavior, but this time on a much faster timescale,
corresponding to frequencies of ∼103 Hz. We will use this
controlled physicochemical hydrodynamic system out of equi-
librium to probe the competition between solutal and thermal
Marangoni forces. That, in the presence of concentration gradi-
ents, the latter can compete with the former ones only is possible
because of the very high-temperature gradients in the system
of a nucleating plasmonic bubble. Under more standard condi-
tions, such as for the evaporation of a binary droplet, the solutal
Marangoni forces tend to be much stronger than the thermal
ones (16).

We note that plasmonic bubbles are in themselves very inter-
esting with potential applications in biomedical diagnosis and
therapy, micro- and nanomanipulation, and catalysis (1, 47–
49). Also note that plasmonic bubbles directly after nucleation
are pure vapor bubbles (50) originating from evaporation of
the surrounding liquid, but during their expansion they are
invaded by dissolved gas from the surrounding liquid (46, 51–53),
which in the long term crucially determines their dynamics and
lifetime.

The key idea of this study here will build on the selective heat-
ing of the liquid surrounding the plasmonic bubble, namely on
the side of the plasmonic nanoparticles. This leads to very strong
temperature gradients across the bubble and thus to thermal
Marangoni forces and at the same time to strong concentra-
tion gradients, as the evaporation of the surrounding binary
liquid is selective, favoring the liquid with the lower boiling
point. Thus, also solutal Marangoni forces along the bubble–
liquid interface emerge. As we will see, which of these two
different Marangoni forces is stronger depends on time and
bubble position, leading to an oscillatory or bouncing bubble
behavior.

Experimental Setup and Findings
The experimental setup is as follows: The gold nanoparticle-
decorated substrate was put in a quartz glass cuvette (10 ×10×
45 mm) filled with an ethanol–water binary liquid of vary-
ing composition (see SI Appendix, Fig. S1 for more details
on sample preparation). A continuous laser (Cobolt Samba)
of 532-nm wavelength was used for substrate irradiation from
the bottom side. The laser power was controlled by using a
half-wave plate and a polarizer and measured by a photodi-
ode power sensor (S130C; ThorLabs). Two high-speed cameras
were installed in the setup to monitor the dynamics of the gen-
erated bubbles. One (Photron SA7) was equipped with a 5×
long working distance objective (LMPLFLN; Olympus) for bot-
tom view imaging and the other one (Photron SAZ) with a
10× long working distance objective and operated at 200 kfps
for fast imaging (see SI Appendix, Fig. S2 for the sketch of the
setup).

A series of typical snapshots of the bubble motion in an
ethanol–water binary liquid (ethanol: 75 wt%) for two early
bouncing cycles (about 19 ms after nucleation of the plasmonic
bubble) is shown in Fig. 1A. The radius R(t), the distance of
the bubble center from the plasmonic-particle-decorated sub-
strate HC (t), and the distance between the bubble bottom and
the substrate HB (t) are plotted in Fig. 1 B–D, with two different

temporal magnifications. In Fig. 1 A, 1–3, the bubble is moving
toward the substrate and expanding under laser irradiation. At
370 µs, the bubble bottom touches the substrate and the bub-
ble radius reaches a maximum value of 24 µm. Subsequently,
the bubble jumps up and at the same time shrinks (Fig. 1 A,
3–5). At 870 µs, the bubble radius has its minimum of 17 µm
and the distance between its bottom and substrate reaches 22 µm
(Fig. 1 A, 6). After that, it moves again toward the substrate for
another cycle (Fig. 1 A, 6–10). In the entire process, the bubble
continuously bounces toward and away from the substrate for 34
times. Finally, it remains sitting on the substrate and enters its
stable and monotonous growth phase. For details of the whole
bouncing process, please refer to Movie S1.

To understand the origin of the bouncing behavior, we inves-
tigate the flow dynamics by particle image velocimetry (PIV).
Fluorescent particles with a diameter of 1.1 µm and a concen-
tration of 100 µg/mL were added to the ethanol–water binary
liquid and illuminated with a laser (see SI Appendix for more
details and results). The results of the PIV measurements for
one jumping cycle are shown in Fig. 2A. In Fig. 2B we also
show the measured time dependence of the tangential and the
normal velocity components on the surface of the bubble on
the side toward the heated substrate (sketch in Fig. 2 A, II)
(Movie S2 and SI Appendix, Fig. S3). Flow illustrations during
the repelling and attracting phase are shown in Fig. 2 C, Left and
Right, respectively.

Interpretation of the Findings
Our interpretation of the measurements is as follows: We start
the cycle at moment 3 (Fig. 1 A, 3), when the bubble has its
maximal extension and is (nearly) in touch (the minimum dis-
tance between the bubble and the wall is in range from 0 to 3
µm, depending on the values of the control parameters) with
the plasmonic-particle-decorated and thus hot substrate. Corre-
spondingly, on the bubble side toward the hot substrate there is
selective evaporation of ethanol, due to the lower boiling point of
ethanol compared to water (SI Appendix, Fig. S4). This leads to
a higher relative water concentration at that side of the bubble
and thus to a solutal Marangoni flow along the bubble inter-
face toward the substrate (Fig. 2 C, Left); see Fig. 2A. This flow
pushes the bubble up, away from the substrate. As there the
temperature is lower, the vapor inside the bubble partially con-
denses, preferentially at the side away from the substrate, and
the bubble shrinks and experiences a decreasing concentration
gradient along its interface and thus a weaker Marangoni force.
At moment 6 (Fig. 1 A, 6) the plasmonic bubble has reached
its minimal size. However, it still experiences a strong temper-
ature gradient as the thermal diffusivity is much faster than the
solutal diffusivity. The ratio of the two diffusivities is the Lewis
number Le , which is about 110 for ethanol at the temperatures
we consider here. As a result, the thermal boundary layer is
much thicker than the concentration boundary layer. The strong
temperature gradient across the bubble with higher temperature
(and thus lower surface tension) on the bubble side toward the
substrate and lower temperature and thus higher surface ten-
sion on the opposite side leads to a thermal Marangoni flow
along the bubble interface, away from the substrate. This flow
pushes the bubble toward the substrate (Fig. 1 A, 7 moment
and Fig. 2 C, Right), where it arrives at moment 8 (Fig. 1 A,
8), which is equivalent to the starting moment 3 (Fig. 1 A, 3)
of the cycle.

We note here that in the bubble bouncing process gravity does
not play any role, in contrast to the bubble bouncing experiment
of ref. 43 that is done on much larger length scales. This can
easily be seen from calculating the ratio ∆ρgR2/∆σ between
gravity and the Marangoni force (41). For a bubble with radius
R = 2×10−5 m, a density of ρ≈ 900 kg/m3 for the water–ethanol
mixture, and ∆σ≈ 0.03 N/m as approximate difference in

2 of 7 | PNAS
https://doi.org/10.1073/pnas.2103215118

Zeng et al.
Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal

Marangoni forces

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
3,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103215118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103215118/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2103215118/video-1
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103215118/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2103215118/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103215118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103215118/-/DCSupplemental
https://doi.org/10.1073/pnas.2103215118


www.manaraa.com

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

B

C

D

A

Fig. 1. Successive bouncing of a plasmonic bubble in an ethanol–water binary liquid with ethanol concentration at ne = 75 wt% and laser power P` =
50 mW under continuous laser irradiation. (A) Experimental snapshots of the bubble bouncing for the first two cycles. (Scale bar, 20 µm.) The instan-
taneous bubble radius R, the center position HC , and distance HB from the bottom of the bubble to the substrate with plasmonic particles are defined
in A, 3 and A, 1, respectively. Obviously, HC = HB + R. (B–D, Left) The bubble radius R, the center position HC , and the distance HB from the bottom
versus time t for the first two cycles of the bouncing process. (B–D, Right) The same on a much longer timescale. The area selected by the rectangu-
lar boxes is the time interval shown in B–D, Left. This particular bubble bounces 34 times within 40 ms, corresponding to a mean bouncing frequency
of fb = 0.85 kHz.

surface tension between water and ethanol, we obtain≈10−4 for
this ratio, i.e., negligible gravity. To further confirm that gravity
does not play any role during this process, the sample substrate
was placed upside down on the top window of the cuvette and
a bubble was produced below the sample substrate. The same
bouncing phenomenon is observed (see Movies S3 and S4 for
details).

Parameter Space
To get more insight into the competition of the solutal and ther-
mal Marangoni forces during the bouncing process, systematic
experiments were conducted by tuning the laser power P` from
30 to 60 mW with ethanol concentrations ne from 62 to 86 wt%.
In the phase diagram shown in Fig. 3A, only in the region filled by
red circles (40 mW <P`< 55 mW and 66 wt% <ne < 82 wt%)

Zeng et al.
Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal
Marangoni forces
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Fig. 2. (A) PIV measurements of the plasmonic bubble for one bouncing cycle. (Scale bar, 50 µm.) In the experiment, the control parameters (initial
concentrations in the binary mixture) are the same as in Fig. 1. (A, I) The temperature gradient generates thermal Marangoni flow, which drives the
bubble downward. (A, II) Shortly after the bubble starts to move downward, the thermal-induced Marangoni flow becomes stronger. (A, III) The bubble
hits the superheated surface, leading to vaporization of (mainly) ethanol near the substrate into the bubble and corresponding bubble growth. The
bubble expanding flow can be recognized from the velocity vectors pointing radially outward from the bubble’s center. (A, IV) The selective vaporization
of ethanol from the binary liquid leads to a water-rich area near the substrate, inducing a solutal Marangoni flows toward the bubble’s bottom and
correspondingly an upward push of the bubble. (A, V) The Marangoni flow is dominated by the temperature gradient again when the bubble no longer
feels a concentration gradient. In this cooler region it shrinks again. Note that there is a sideways motion of the bubble in A, V owing to the asymmetry
in the solutal Marangoni flow (A, IV). (B) Measured velocities as a function of time t from the PIV measurement shown in A. The given values refer to
the positions shown in the lower right corner of A, II: Vn (black) and Vt (blue) are the normal and the tangential velocity component, respectively. Upper

Right Inset displays the velocity magnitude |V|=
√

V2
n + V2

t as function of time t. (C) Schematic diagrams of the bubble bouncing mechanism. Left diagram

sketches the repelling phase when the solutal Marangoni force dominates and Right diagram shows the attracting phase when the thermal Marangoni flow
dominates.

does bubble bouncing take place. Beyond this parameter range,
there are three more phases in the phase diagram: unstable bub-
bles, no bubbles, and pinned bubbles, respectively (see Movies
S5–S7 for comparison). For bouncing bubbles, we find that the
bouncing frequency fb is strongly influenced by the ethanol con-
centration ne and the bubble radius R, as shown in Fig. 3B.
It is found that fb increases monotonously with increasing ne ,
while it depends nonmonotonously on R. For R. 15 µm, fb
decreases with increasing R, while for R& 15 µm, fb increases
with increasing R. (See Movies S8–S11 for comparisons with
different ne .)

Theoretical Model
To understand the observed dependence of fb on ne and R,
we propose a simple theoretical model of the bouncing pro-
cess. The essence of the competition between the solutal and
the thermal forces acting on the bouncing plasmonic bubbles
can be described by a simple effective point force ODE (ordi-
nary differential equation) model for the bubble’s center position
z =Hc(t) and its radius R(t), with varying added mass of the
bubble plus fluid acceleration, in the spirit of refs. 54–57; see
also section IX of ref. 6. Within such a model the normal (to

the substrate) force on the moving bubble can in principle be
described by (54)

F (t) =−4πρνR(t)ż (t)

+
4

3
πρR(t)3z̈ (t) +

2

3
πρ

(
d
[
R(t)3ż (t)

]
dt

+ 2R(t)3z̈ (t)

)

+ 8πρν

∫ t

0

exp

[
9ν

∫ t

τ

R(t ′)−2dt ′
]

× erfc

√9ν

∫ t

τ

R(t ′)−2dt ′

d [R(τ)ż (τ)]

dτ
dτ

+Fs−M (R(t), z (t)) +Fth−M (R(t), z (t)).
[1]

Here it has been assumed that the bubble dynamics are not
affected by wall effects; i.e., the prefactors of the various force
contributions refer to the case of a bubble in the bulk. The
first term is the Stokes drag force on the bubble; taking the
Stokes drag is justified as the bubble’s translational Reynolds
number Ret(t) = Ḣc(t)R(t)/ν remains smaller than 1. (In fact,
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Fig. 3. (A) Phase diagram for the bubble behaviors at the gold
nanoparticle-decorated sample surface upon continuous-wave laser irradi-
ation. The control parameters are the ethanol concentration ne and the
laser power P`. Bubble bouncing takes place in the red regime where 40
mW < P`< 55 mW and 66 wt% < ne < 82 wt%. (B) Experimentally mea-
sured (data points, P` = 45 mW) and theoretically estimated (transparent
curved surface) bubble bouncing frequency fb as a function of the ethanol
concentration ne and the bubble radius R. Both exhibit similar trends. For
the theoretical curve the prefactor k = 23 of the Prandtl–Blasius–Pohlhausen
relation has been adapted to the experimental results.

an upper estimate with Ḣc ≈ 0.06 m/s, R≈ 2× 10−5 m, and
ν= 2.2× 10−6 m2/s for the kinematic viscosity of the liquid gives
Ret = 0.54). The terms in the second row reflect added mass plus
liquid acceleration; the term in the third and fourth rows reflects
the Basset history force, and the terms in the fifth row are the
solutal and thermal Marangoni forces, respectively. If the bub-
ble is fully immersed in the boundary layers, the two Marangoni
forces can be modeled as Fs−M ∼+γsR

2 and Fth−M ∼−γthR2

(41, 44), where γs and γth are the surface tension gradients
caused by concentration difference and temperature difference
along the vertical direction, respectively. Both are assumed to be
constant within the respective boundary layers.

The concentration boundary layer thickness λs is much smaller
than the thermal boundary layer thickness λth . It even holds λs <
R so that the solutal Marangoni force is relevant only near the
substrate. This also becomes evident from the PIV experiments
(Fig. 2 A, IV ). Therefore, we consider the solutal Marangoni
force on the bubble as a short impulse, i.e., like shooting a bullet.

Correspondingly, we call our simple model the “bullet model.”
After the short impulse, the bubble’s motion is dominated by
the thermal Marangoni force ∼−γthR2 and the Stokes drag
force −4πρνRż (t). Accordingly, the dynamical equation for the
bouncing bubble can be simplified to

10

3
πρR3z̈ (t) =−4πρνRż (t)− γthR2. [2]

Here we took the bubble radius as constant for simplicity, which
is reasonable since the radius considerably changes only within
a small fraction of time (∼15%) during the bouncing cycle (SI
Appendix, Fig. S6). The prefactors of the first two terms in Eq.
2 again refer to the case of a bubble in the bulk and ignore pos-
sible modifications of the added mass coefficient and the drag
coefficient due to wall effects, whereas for the third term we put
the prefactor to 1. Both are justified as later an unknown prefac-
tor has to be introduced anyway, in which such prefactors can be
absorbed (Eq. 5). The initial condition for the position is z (0) = 0
and the initial velocity ż (0) follows from equating the work done
by the solutal Marangoni force Ws−M =

∫
Fs−M (z )dz to the

initial kinetic energy Ek = 1
2
( 10

3
πρR3)ż (0)2 for the moving liq-

uid around the bubble. As λs <R, the solutal Marangoni force
acts only in the concentration boundary layer and the work it
performs can be estimated as Ws−M = γsλ

3
s . With these initial

conditions for z (0) and ż (0), Eq. 2 can be solved analytically to
finally arrive at an implicit equation for the duration time tdur for
the bubble to return to its initial position (which is the inverse
bouncing frequency fb):

tdur = f −1
b =

5R2

6ν

(
1 +

√
48π

5

γs
γth

ρν2

γthR2

λ3
s

R3

)(
1− e

− 6ν
5R2 tdur

)
.

[3]

The thickness λs of the concentration boundary layer is deter-
mined by the diffusion equation for a scalar field (58) as λs ∼
k min(R,R`)/

√
Sc, where Sc is the Schmidt number Sc = ν/D ,

with D ≈ 10−9 m2/s the mass diffusivity of water in ethanol. The
expression for λs takes into account that, if the bubble becomes
larger than the radius R`≈20 µm of the heated laser spot, the
relevant length scale must be the concentration boundary layer
thickness around that laser spot. The prefactor k is a priori
unknown and is adapted to the experimental data (Fig. 3B). With
k = 23 they can be well described. More details on the bullet
model are given in SI Appendix; see in particular SI Appendix,
section 6 and Fig. S7.

It is instructive to identify the appropriate dimensionless con-
trol parameters of the bouncing plasmonic bubble. These are
the solutal and thermal Marangoni numbers Mas ≡R2γs/(ρνD)
and Math ≡R2γth/(ρνD), respectively; the Schmidt number Sc;
and the ratio R`/R of the laser spot radius and the bubble radius.
For the definition of the Marangoni numbers, we define the sur-
face tension gradients γs and γth separately for the concentration
and the temperature differences within the respective boundary
layers. This can reasonably be done as the solutal boundary layer
thickness is much thinner than the thermal one. With these def-
initions and using the viscous timescale R2/ν and the bubble
radius R as reference scales, Eqs. 2 and 3 can be rewritten as

10

3
πz̃ ′′=−4πz̃ ′− Math

Sc
, [4]

t̃dur = f̃ −1
b =

5

6

(
1 +

√
k3

48π

5

Mas

Ma2
thSc1/2

min
(

1,
R`
R

))(
1− e−6t̃dur/5

)
,

[5]
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reflecting that the bubble bouncing period indeed depends only
on the four dimensionless groups Math , Mas , Sc, and R`/R and
that thermal and solutal Marangoni forces compete with each
other. It also shows that there is only one free dimensionless
parameter, k , in which possibly different prefactors in the terms
of Eq. 2 can all be absorbed.

The bullet model allows us to understand the physics of the
experimentally found parameter dependences of Fig. 3B. First,
the monotonous increase of the bouncing frequency fb on the
ethanol concentration ne is due to the fact that, in the experi-
mental parameter space of 62 wt% <ne < 86 wt%, a higher ne

leads to a smaller surface tension gradient γs . This results in a
lower kinetic energy Ek after the solutal Marangoni impulse and
thus to a higher bouncing frequency fb as the bubble is pulled
back earlier by the thermal Marangoni force. Next, the non-
monotonous dependence of the bouncing frequency fb on the
bubble radius R is due to the transition of the concentration
boundary layer thickness λs from being determined by the bub-
ble radius R to being determined by the laser spot radius R`. For
a tiny bubble with R<R`, an increase of R results in an increase
of the kinetic energy (Ek ∼ γsλ3

s ), leading to a decrease of fb . In
contrast, for R≥R`, the boundary layer thickness λs is limited by
R` and Ek ∼ γsλ3

s remains nearly constant. However, the added
mass of the bubble does increase with increasing R. This leads
to a decrease of the initial velocity ż (0) and an increase in the
bouncing frequency fb .

Finally, we put the experimentally found phase diagram of
Fig. 3A—showing that bubble bouncing can take place only if
both the laser power P` and the ethanol concentration ne are in
a moderate range—into the context of our model: For the no-
bubble regime at low laser powers P`, the laser power is below
the threshold for the nucleation of the plasmonic bubble at the
given ethanol concentration (4). Too high laser powers, how-
ever, lead to an unstable bubble behavior (“unstable regime”):
For large ethanol concentration ne , due to the massive vaporiza-
tion of ethanol, new bubbles can already form before the thermal
Marangoni forces have pulled back the former bubble to the
substrate. This can lead to bubble collisions and thus instabil-

ity. On the other hand, for ethanol concentrations ne . 66 wt%,
the strong solutal Marangoni force (reflected in a large γs) leads
to a very high jumping height of the bubble, so that also here
a new bubble can form before the return of the former bubble
(Eq. 3). Finally, in the pinned regime ne & 82%, the ethanol con-
centration difference is so small that the solutal Marangoni force
directing away from the substrate is too weak to depin the bubble
from the substrate.

Conclusions and Outlook
We have experimentally and theoretically studied the competi-
tion between thermal and solutal Marangoni forces acting on
a nucleating plasmonic bubble in a binary liquid. This compe-
tition leads to a periodic bouncing of the bubble toward and
away from the surface with a frequency of several kilohertz. The
phenomenon not only exemplifies the richness of phenomena
that can occur in the physicochemical hydrodynamics of bubbles
far from equilibrium and with phase transitions, but is also very
relevant way beyond the nucleation and early life of plasmonic
bubbles in binary liquids: It can straightforwardly be general-
ized to the nucleation and early life of vapor bubbles in boiling
phenomena in binary liquids or to electrolytically or catalytically
generated bubbles in multicomponent liquids. For applications,
the bouncing of these bubbles can presumably be a considerable
advantage, leading to much better mixing in the liquid close to
the substrate and therefore to higher efficiency in processes like
electrolysis and catalysis.

Data Availability. All study data are included in this article and/or
SI Appendix.
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